If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-30X+161=0
a = 1; b = -30; c = +161;
Δ = b2-4ac
Δ = -302-4·1·161
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-16}{2*1}=\frac{14}{2} =7 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+16}{2*1}=\frac{46}{2} =23 $
| x2+3x=45 | | x2+15x-54=0 | | 3x+2x+36=180 | | 12=12+v8/2 | | X²+12x-18000=0 | | 3t÷4=6 | | n4=5 | | X^2-8x+6.25=0 | | 6=12-3f | | 1=10-3z | | 7(3x-1)-6(2x+3)=8(x-2)+2 | | 17=8+-3f | | 7=-1-2n | | 4x+48=6x+48 | | 5=-11+2h | | 3+2k=-5 | | 2r-1=7 | | -3k+5=11 | | 2x+24+5x-12=180 | | 4u+-13=-17 | | -2f+-6=-2 | | 6+-2n=20 | | 3h-14=-2 | | 5x=-12.5 | | 2x+9x+3=14 | | 13.8-5x=1.3 | | 7x-10+2x=10-(x+20) | | X+2/3-(x+1)=(x-3) | | 3x+6/2x-4=3 | | -2x^2+12x+43=P(x) | | 8x-15=14-(x+20) | | 8x-15=14- |